

THE SECURITY FOR SAFETY PROBLEM IN CYBERPHYSICAL SYSTEMS

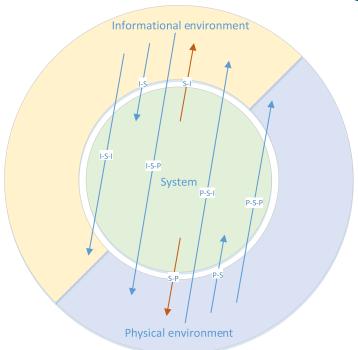
Semen Kort, Ekaterina Rudina

Critical Infrastructure Defense, Future Technologies

MOTIVATION

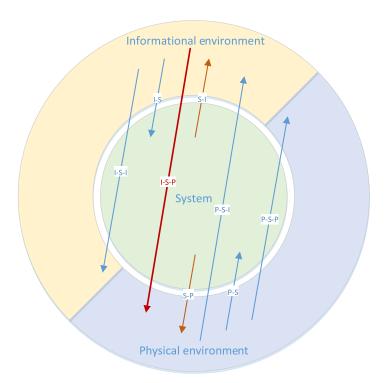
Why this research has to be done

- The continued disputes about the validity of using cybersecurity methods to enhance the safety of cyberphysical systems
- The lack of threat modeling based approaches to Security for Safety assessment
- The need of some formal reasoning on use of MILS findings and recommendations in our current projects related to the cyberphysical systems security

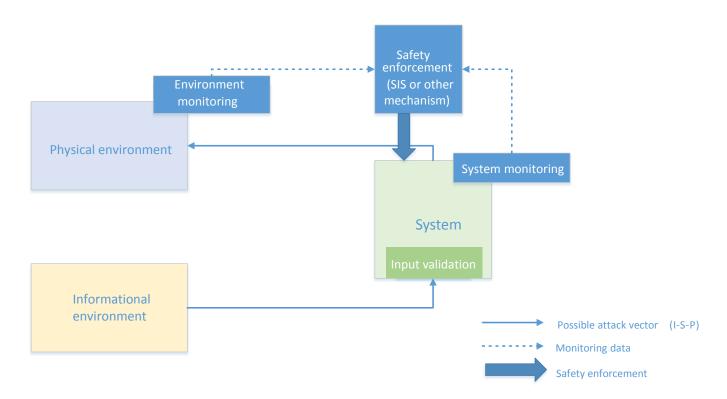


THE GOAL

This research aims to


- Analyze the relations between security and safety in cyberphysical systems
- Perform threat modeling and identify the possible weaknesses in enforcement of security and safety considered together
- Propose an enhanced approach to the security and safety enforcement based on MILS architecture

SAFETY AND SECURITY ISSUES IN CYBERPHYSICAL SYSTEMS


- Cyberphysical systems exist in at least two types of environment: the informational environment and the physical environment.
- ➤ Issues may arise from both types of environment and affect physical aspects, informational aspects and the system itself

THE PROBLEM IN FOCUS

- ➤ The vector **I-S-P** relates to attacks targeting the physical environment of the system
- The problem of protecting against dangerous impacts on system safety caused by cyberattacks –
 Security for Safety (SfS) problem.

SECURITY FOR SAFETY PROTECTION

THREAT MODELING

We apply STRIDE model to identify weaknesses in the Security for Safety protection scheme

Object under attack

input control, monitoring sensors channels, safety enforcement mechanism and channels

For each object

- Security/Safety assumptions that might not remain true (for each object)
- Defect or vulnerability exploited by attacker
- Possible threats according STRIDE (for each object)
- Prior countermeasures and recommendations

PROPOSED MILS-BASED APPROACH

to provide the solution for the SfS problem

Proposal #1:

Implement validation of untrusted external input in a separated MILS domain

Proposal #2:

Run monitoring sensors in the dedicated domains

Proposal #3:

Do not expose monitoring data to application domains

Proposal #4:

Do not expose the safety enforcement mechanism, implement special security measures

Proposal #5:

Use dedicated channel(s) to put the system or its components in a safe state

CONCLUSION

The conducted research helps us

- Make determining of significant threats in cyberphysical systems more clear (by instantiating the I-S-P vector, not by using CIA triad or some other irrelevant concept)
- Identify the possible weaknesses in our 'Security for Safety' solutions
- Reasonably enhance the approach to the security and safety enforcement using MILS architecture principles

LET'S TALK?

Kaspersky Lab HQ 39A/3 Leningradskoe Shosse Moscow, 125212, Russian Federation

Tel: +7 (495) 797-8700

www.kaspersky.com

